Pre-logical Relations
نویسندگان
چکیده
We study a weakening of the notion of logical relations, called prelogical relations, that has many of the features that make logical relations so useful as well as further algebraic properties including composability. The basic idea is simply to require the reverse implication in the definition of logical relations to hold only for pairs of functions that are expressible by the same lambda term. Prelogical relations are the minimal weakening of logical relations that gives composability for extensional structures and simultaneously the most liberal definition that gives the Basic Lemma. Prelogical predicates (i.e., unary prelogical relations) coincide with sets that are invariant under Kripke logical relations with varying arity as introduced by Jung and Tiuryn, and prelogical relations are the closure under projection and intersection of logical relations. These conceptually independent characterizations of prelogical relations suggest that the concept is rather intrinsic and robust. The use of prelogical relations gives an improved version of Mitchell’s representation independence theorem which characterizes observational equivalence for all signatures rather than just for first-order signatures. Prelogical relations can be used in place of logical relations to give an account of data refinement where the fact that prelogical relations compose explains why stepwise refinement is sound.
منابع مشابه
A Generalisation of Pre-logical Predicates to Simply Typed Formal Systems
We generalise the notion of pre-logical predicates [HS02] to arbitrary simply typed formal systems and their categorical models. We establish the basic lemma of pre-logical predicates and composability of binary pre-logical relations in this generalised setting. This generalisation takes place in a categorical framework for typed higher-order abstract syntax and semantics [Fio02,MS03].
متن کاملSemantic and Syntactic Approaches to Simulation Relations
Simulation relations are tools for establishing the correctness of data refinement steps. In the simply-typed lambda calculus, logical relations are the standard choice for simulation relations, but they suffer from certain shortcomings; these are resolved by use of the weaker notion of pre-logical relations instead. Developed from a syntactic setting, abstraction barrier-observing simulation r...
متن کاملLax Logical Relations
Lax logical relations are a categorical generalisation of logical relations; though they preserve product types, they need not preserve exponential types. But, like logical relations, they are preserved by the meanings of all lambda-calculus terms. We show that lax logical relations coincide with the correspondences of Schoett, the algebraic relations of Mitchell and the pre-logical relations o...
متن کاملA generalisation of pre-logical predicates and its applications
This thesis proposes a generalisation of pre-logical predicates to simply typed formal systems and their categorical models. We analyse the three elements involved in pre-logical predicates — syntax, semantics and predicates — within a categorical framework for typed binding syntax and semantics. We then formulate generalised pre-logical predicates and show two distinguishing properties: a) equ...
متن کاملConstructive Data Reenement in Typed Lambda Calculus
A new treatment of data reenement in typed lambda calculus is proposed, based on pre-logical relations HS99] rather than logical relations as in Ten94], and incorporating a constructive element. Constructive data reenement is shown to have desirable properties, and a substantial example of reenement is presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999